Antonin Robinet, INSA Centre Val de Loire et Khaled Chetehouna, INSA Centre Val de Loire
Beaucoup d’additifs utilisés pour lutter contre les incendies se sont révélés être très nocifs pour l’environnement, il est donc nécessaire d’étudier de nouvelles pistes. Aussi surprenant que cela puisse paraître, les alcools pourraient se révéler être de bons candidats.
Contrairement à ce qui est souvent montré au cinéma, un véhicule endommagé n’explose pas. En revanche, les incendies sont tristement courants. Nos voitures et autres véhicules de transport à roues sont des machines très complexes qui possèdent de nombreux points de défaillances. En 2022, les sapeurs-pompiers comptabilisaient 45 588 interventions pour des feux de véhicules.
Le compartiment moteur d’un véhicule est une zone sensible. C’est un endroit très chaud (jusqu’à plusieurs centaines de degrés Celsius), rempli de substances combustibles diverses (carburant, huiles de synthèse, graisses, flexibles, plastiques) et soumis à un apport d’air régulier grâce au ventilateur du circuit de refroidissement. Le compartiment moteur réunit donc les trois composantes du triangle du feu qui sont la carburant, l’oxygène de l’air et une source de chaleur.
Les dernières réglementations en vigueur posent des défis pour la protection incendie. Les normes permissibles d’émissions de polluants ont généralisé le déploiement de filtres à particules qui doivent se régénérer, c’est-à-dire éliminer ces particules, à une température comprise entre 550 °C et 650 °C.
Les constructeurs capitonnent les compartiments moteurs avec de l’isolant pour diminuer le bruit perçu par les usagers mais cela a pour effet secondaire de piéger l’air chaud dans le compartiment moteur et d’en augmenter la température ambiante.
Alors que des réglementations sur les moyens d’extinction automatique des incendies pour les véhicules de transport public se mettent en place, intéressons-nous aux nouveaux défis de ce domaine.
Des molécules efficaces contre les incendies mais nuisibles pour l’environnement
Au cours du XXe siècle, on découvre que les halons, des gaz à base de brome, sont des agents extincteurs très efficaces. Dès le début des années 1980, il est cependant reconnu qu’ils participent à la dégradation de la couche d’ozone et leur utilisation est progressivement éliminée depuis l’adoption du protocole de Montréal en 1987.
Les hydrofluorocarbures (HFC) ont depuis lors été utilisés comme des alternatives. Ces gaz ne dégradent pas la couche d’ozone mais leur pouvoir de réchauffement global est plusieurs milliers de fois plus important que le CO₂. L’amendement Kigali, signé en 2016, a ajouté les HFC à la liste du protocole de Montréal.
De manière générale, l’ensemble des molécules contenant des halogènes comme le fluor sont progressivement marginalisées. La réglementation européenne prévoit l’interdiction prochaine des PFAS, ces « polluants éternels ». Ils sont utilisés dans la formulation des mousses anti-incendie employées par les sapeurs-pompiers pour lutter contre certaines classes de feux. On constate donc que toute la filière de l’extinction incendie doit se réinventer, dans un contexte de changement climatique global et alors que les normes sont des plus en plus restrictives.
Pour éviter de rejouer un scénario tel que celui qui a conduit à l’adoption des HFC, il convient d’étudier soigneusement chaque solution alternative potentielle, de se plonger dans la littérature scientifique passée et présente et d’identifier les impacts de ces technologies du point de vue de la performance anti-incendie mais également sur l’environnement et la santé humaine. C’est cet écueil que nous cherchons à éviter au sein de notre unité P2CFE du laboratoire PRISME et qui fonde mon travail de thèse, en menant la recherche sur une technologie propre : le brouillard d’eau.
Petites gouttes, grands défis
Les gouttes d’un brouillard d’eau sont très petites. Cela permet d’attaquer la flamme de trois manières. Premièrement, elles permettent de refroidir la flamme et la surface du combustible. Deuxièmement, les gouttes d’eau qui se vaporisent prennent beaucoup de place et chassent l’oxygène. Enfin, la densité du brouillard lui permet d’atténuer le rayonnement thermique de l’incendie et l’empêche ainsi de se propager en réchauffant à distance du combustible environnant. Le brouillard d’eau agit alors comme un écran de protection.
Dans notre laboratoire, le brouillard est composé de gouttes d’un diamètre d’une centaine de micromètres. Nous avons pu montrer que c’est le mécanisme de refroidissement de la flamme qui est privilégié lors de l’aspersion. Ce mécanisme est accentué lorsque le brouillard est pulvérisé avec une grande vitesse sur l’incendie. Cela engendre beaucoup de turbulence, ce qui brise la structure de la flamme, comme lorsqu’on souffle sur une bougie.
L’utilisation du brouillard d’eau pour la protection incendie d’un compartiment moteur ne coule pas de source car il est nécessaire d’intégrer sur le véhicule un réservoir d’eau d’une capacité de quelques dizaines de litres.
Un autre défi est le moteur lui-même, qui est un obstacle potentiel entre la buse du brouillard et la flamme. Il faut donc privilégier une forte vitesse initiale des gouttes et un faible diamètre afin de favoriser la distribution des gouttes dans l’ensemble du compartiment.

Fourni par l’auteur
Le ventilateur de refroidissement est à même de souffler les petites gouttes du brouillard d’eau. Nous avons donc étudié l’influence de cette ventilation sur les performances du brouillard d’eau. Une faible ventilation transversale permet d’améliorer le temps d’extinction (de 14 secondes sans ventilation à 7 secondes pour une vitesse de ventilation de 3 mètres par seconde) en ramenant une partie du brouillard vers la flamme tandis qu’une forte ventilation transversale balaie systématiquement le spray et décroît fortement les capacités de refroidissement et d’extinction du brouillard (la flamme n’est pas éteinte en moins de 30 secondes). Pour contourner ce problème, il faut privilégier les cônes d’aspersion avec un angle élevé et orienter la projection dans le sens de la ventilation.
Éteindre le feu avec du vin ?
L’amélioration de la performance peut également passer par la modification de la solution pulvérisée. Afin d’innover, nous avons mené un travail exhaustif de revue de la littérature scientifique sur ce sujet.
Nous avons notamment pu mettre en évidence une nouvelle classe d’additifs pour le brouillard d’eau : les solvants. Parmi ces solvants, on trouve de nombreuses espèces hautement inflammables, comme l’éthanol.
Ajouter de l’éthanol dans l’eau pour améliorer la performance du brouillard d’eau peut sembler paradoxal. C’est pourtant l’effet que nous avons pu tester et confirmer au sein de notre laboratoire, sur une catégorie d’alcools allant du méthanol à l’heptanol.
L’augmentation du taux de refroidissement par rapport à l’eau seule est indéniable mais son origine est encore mal comprise. Les hypothèses privilégiées concernent une diminution du diamètre des gouttes par l’ajout d’alcool dans l’eau ou une accélération du processus d’évaporation des gouttes grâce à la présence d’alcool.

Fourni par l’auteur
L’utilisation potentielle d’alcools comme additifs répond également à un impératif environnemental. La revue a mis en évidence un manque d’intérêt des scientifiques pour l’impact sur la santé et l’environnement des additifs pour le brouillard d’eau, alors même que la recherche sur ce brouillard d’eau ne peut pas se décorréler de l’interdiction progressive d’autres technologies d’extinction incendie. Dans cette optique, les alcools sont des additifs intéressants car ils sont biodégradables et possèdent de bonnes propriétés antigel et anticorrosion. Le brouillard d’eau additivée en est encore au stade d’études au laboratoire mais il ne fait aucun doute que le besoin réglementaire va fortement accélérer son développement dans les prochaines années.
Antonin Robinet, doctorant en sciences des incendies, INSA Centre Val de Loire et Khaled Chetehouna, Sécurité Incendie ; Combustion ; Pyrolyse ; Milieu poreux, INSA Centre Val de Loire
Cet article est republié à partir de The Conversation sous licence Creative Commons. Lire l’article original.